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Background:

Prostate cancer is the second most diagnosed cancer and the fifth leading
cause of cancer death among men worldwide, with global rates projected
to rise over the next thirty years. Prostate cancer is driven by a range of
molecular alterations including loss of heterozygosity, hypermethylation,
activating and inactivating mutation of key genes, chromosomal loss or
gain, and gene amplification. These alterations are commonly assessed
for clinical uses ranging from prognostic to therapeutic response
prediction using single or multi-gene assays, which often take weeks and
come at high cost. Previous studies using machine learning methods have
identified histologic phenotypes of single genomic alterations using the
H&E image alone, with variable performance. We demonstrate that a
deep learning model can be trained to identify genomic features hidden
in scanned H&E whole slide images of prostate cancer biopsies.

Methods:

This model is trained to classify alterations defined by the MSK Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay for
abnormalities in 16 genes (AR, RB1, TP53, PTEN, JAK1, ELOC, APC, CTNNB]T,
CDK12, KMT2C, KMT2D, ZFHX3, FOXAT1, BRCA2, SPOP, PIK3CA) with
published clinical relevance in prostate cancer. The algorithm operates
by first identifying localized image tiles containing cancer using an

FDA approved detection algorithm (Paige Prostate). These tiles are then
processed by a convolutional neural network to extract 512-dimensional
feature embeddings that are further aggregated into a slide-level
classification for each genomic marker. 8-fold cross validation was used,
where the whole dataset was split into 8 folds with a 6:1:1 ratio between
the train, tune, and test sets, respectively.
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Results:

We demonstrate the ability of this model to rapidly screen for

a discriminating morphologic signal in multiple clinically significant
genes. Of the 16 genes screened digitally, results were seen with
particularly strong signal for detection of AR amplification,

TP53 mutation, and RB1 and PTEN deletion, with AUCs of 0.86

[95% confidence interval (Cl): 0.83-0.89], 0.69 [95% CI: 0.64-0.74],
0.81[95% Cl: 0.69-0.93], 0.68 [95% Cl: 0.62-0.74] respectively. The
potential signals in the other 12 genes warrant further investigation
with alternate approaches.
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Detection of AR Amplification Signal Localized
to Tumor Cells

Conclusion:

This study demonstrates a method for rapid screening for association of
tumor morphology on H&E with clinically relevant gene abnormalities,
enabling the potential for multiplex screening of cases for abnormalities,
either for direct clinical predictions or cost- and time-efficient triage to
definitive molecular testing for patient care stratification.




